

10 kV at 10 km: Will it Fly?

Dr. Isik Kizilyalli Program Director Advanced Research Projects Agency-Energy

July 8, 2019

Global CO₂ Emissions: Aviation Difficult-to-Eliminate Emissions

Technology needs:

- 1. Energy storage
- 2. Efficient, light weight & low cost
- 3. Cabling & electrical conversion

Large electric aircraft will require "utility-scale" power at take off

Today, onboard electrical power is orders of magnitude lower

- Today's maximum electric generation capacity:1 MW (B787)
 - Ancillary power (e.g. HVAC, avionics, actuators, de-icing)
 - 500 km of wiring
 - ▶ 7,400 kg
 - 235 V_{AC}
- Fully electric propulsionwill require 100x power

First Flight Year

DC Offers Greater Efficiency and Power than AC

Benefits

Reduced losses

Fewer cables

Less weight

Increased payload

Challenges

More power electronics

High voltages and lower current reduce cable weight...

^{*} Weight estimated for 8, 45 m cables; conductor weight only, insulation will add additional weight

^{*} Assumed 50MW cable, 100MW aircraft, 2X redundancy, 2 generators

^{*}Cu conductor, area change due to thermal expansion <0.5%

...but high voltages at low pressures creates discharge!

- Partial discharge
 - High electric fields
 - Breakdown of gases
 - Electrodes not bridged
 - V_b is 3X lower at 10km
- Bubbles in liquids
- Voids in dielectrics
- High-frequency breakdown
- Temperature effects

^{*} Assumed 500-µm gap

^{*} Assume U.S. Standard Atmosphere

Partial discharge can lead to complete failure

- Frequent discharge events can lead to irreversible damage
- Chemical transformation can accelerate the breakdown process

Insulation material innovations need to meet challenging targets

Possible Solutions

MgB₂ super-cooled to 25 K, liquid H₂

YBCO super-cooled to 77 K, liquid N₂

Superconducting Systems:

- Able to withstand high currents with minimal losses
- Wires and <u>cooling system</u> ~60,000 kg
- Cryogenic system reliability, efficiency and weight are critical

Nexans high voltage transmission cable

Insulating materials:

- Need dielectric strength, good thermal conductivity, and low specific weight
- · Conformal, easily shaped
- Minimize voids

https://www.nexans.de/eservice/Germany-en/navigatepub 148784 -4792/Nexans wins a 73 million Euro contract in den Unit.html

We want your input!

- What does electrical distribution topology need to look like?
- Is superconducting wire the only viable approach?
- What do we need from power converters?
- How about the electrical connector technology?
- What innovation is needed for insulation materials?
- Do we have scalable manufacturing processes?

Isik.Kizilyalli@hq.doe.gov